How to Democratize Your Data

Master Data Management Blog by Stibo Systems logo
| 4 minute read
June 03 2020

In a business context, democratizing data means to make data (and derived analytics and insights) available to all layers of an organization and its business ecosystem, across departmental boundaries.

While this sounds sensible, delivering on the concept can be challenging. Historically, in most companies, data has been stored, analyzed and used on a departmental basis. Although, many say: “Yes, we do share data internally,” in reality, each department or division retains control and visibility of the data, often leading to siloed decision making.

How to Democratize Your Data

The good news is, there is a shift in mindsets going on. As data continues to grow and flow at a rapid pace, stakeholders need to make better, more qualified decisions based on data from across the enterprise. Outdated data handling processes, compounded by different, complex and tightly regulated data analysis tools, pose severe limitations for business leaders who need to make decisions based on a unified and single version of the truth across the enterprise.

Democratizing data is only possible if data is transparent. That includes its quality and sources, how it is shared and used, and who is accountable for the data quality as well as for the interpretation of the data.

Challenges of unlocking siloed data

Democratization of data is quickly emerging as a means to overcoming the problem of complexity and lack of visibility, and not a moment too soon. New technologies are generating even larger and varied data sets; e.g., from the IoT (Internet of Things), AI (artificial intelligence) or ML (machine learning), adding further complexity to the democratization process. To be truly valuable, all this data must retain clear definitions, ownership and quality. Unlocking the accessibility and applicability of data is a key issue faced by many companies, and those that fail to effectively apply data science to derive value from their data may be putting themselves at a significant competitive disadvantage.

Extracting value also poses a major data governance challenge, as companies must strike a balance between deriving insights from borderless data sets and maintaining data privacy and security. There is constant concern of sensitive business data falling into the wrong hands or of publishing data that isn’t ready according to its state in the data lifecycle. For these and many other reasons, most businesses do not want to risk providing wider access to their business-critical data assets. This often results in a “do nothing” state of inertia that hampers innovation, discovery and business growth.

The data scientist’s conundrum

The solution to such problems has typically been to turn to employees with data science skills, such as enterprise data architects, to oversee and secure the flow of data between systems, either using an ESB (Enterprise Service Bus), the rise of headless applications or via a growing amount of APIs. This leads many organizations to continue to relegate data science-driven knowledge to a small number of employees and does little towards providing a scalable solution to the problem. Especially as the volume and velocity of data continues to grow.

Relegating data knowledge to a handful of people is problematic on many other levels. Data scientists in such organizations find it frustrating because it’s hard for them to communicate their findings to colleagues who lack basic data literacy. Business stakeholders are unhappy because data requests take too long to fulfill and often fail to answer critical questions. In some cases, because the requestor failed to explain the question properly to the data scientist in the first place.

Democratizing data without losing control

While these challenges may seem simple, the implications can be very serious, leading to inefficient operational processes, restrictions on the ability to build existing revenue streams or slower responses to market disruptions, for example the impact of the current pandemic.

The key is to put technologies and delivery methods in place that enable effective democratization of data in a way that last-generation approaches such as data warehouses failed to do, meeting the increasingly pressing need for faster time to value. This often means prioritizing fast, high-quality data over the more amorphous concept, big data. It also creates an opportunity for IT and data leaders to address this challenge by positioning themselves as a data broker, so they can empower end users with business-centric platforms and platform-based services, including

  • Tools that manage data quality, accuracy and accessibility services, such as master data management (MDM), shifting away from a single-schema approach with its inevitable compromises and instead moving toward a data governance-enabling approach that makes the data trusted and accessible across the enterprise

  • Enterprise-wide solutions that seamlessly integrate and manage a wide variety of data from across different domains and external sources, creating one, centralized digital business hub – a hub of hubs.

  • Platform consumption by end users as a cloud-based service, which includes infrastructure, capacity, identity management, etc.

  • Embedded analytics platforms (EAP) that enable end users (who often lack access to more complex BI tools) to quickly analyze data to aid decision-making, without burdening data science teams.

While delivering on solutions like these is not common everywhere, there are many examples of companies that have used this approach to upend entire industries. Airbnb, where it is often said that “data is the voice of our customers,” presents an excellent example of an organization where democratizing data is intrinsic to the success of its business model. Others, such as McDonalds, are benefitting from democratized data, by working with suppliers to improve data transparency, delivering trusted ingredient information which they roll up and present to customers within their restaurants.

Data governance and MDM: the foundation of a data democracy

Balance is essential when determining where to place borders in the world of data democracy. As scale, complexity, availability and data transparency increase, so do the challenges associated with maintaining data quality. Data profiling carried out to determine anomalies, inconsistencies and redundancies in content, structure and relationships helps fix challenges and to maintain relevant versions at the source. Defining data quality capability and roadmap through appropriate business rules and key performance indicators is the first step toward enabling the clear vision of data through all phases of data management. Such a strategy will prove to be the next frontier of competitive advantage facilitating democratization of data.

Ultimately, democratizing data means that everybody that needs transparent access to data, and tools to extract value from it, can get it, without having to constantly go through gatekeepers which creates bottlenecks that slow innovation and growth. It requires that you accompany the access with a system that provides oversight and governance to be sure the data is used in compliance with organizational and regulatory controls and to keep that information accurate and up-to-date; and it requires an easy way for people to analyze and understand the data so that they can use it to expedite decision-making and uncover opportunities for the organization. The goal is to enable anybody to use data at any time across the business ecosystem to make decisions without unnecessary barriers to access or understanding.

As noted, master data management plays a critical role in putting the foundation for a data democracy in place. The process takes careful planning and implementation but once it takes hold, there is no stopping the potential power it brings to users across every imaginable discipline or industry.

Access to accurate trustworthy data has always been essential to business success. Today, companies are driving greater revenue and growth by opening that access to everyone that needs it across the enterprise business ecosystem. Learn more about the value of democratizing data and creating data transparency.


Master Data Management Blog by Stibo Systems logo

Decades of experience within master data management, technologies, people and processes has led Jesper into his current role, heading Stibo Systems' innovation efforts. He has a particular focus on multidomain MDM, augmented MDM and technology adoption. Being responsible for company-wide strategic initiatives on product innovations, he is constantly seeking to increase the value of product offerings to customers and partners. Jesper comes from prior roles as Product Strategy Director, Section Head R&D, Director Professional Services, and Associate Professor at a Danish university.

Discover Blogs by Topic

  • MDM strategy
  • Data governance
  • Customer and party data
  • See more
  • Retail and distribution
  • Manufacturing
  • Data quality
  • Supplier data
  • Product data and PIM
  • AI and machine learning
  • CPG
  • Financial services
  • GDPR
  • Sustainability
  • Location data
  • PDX Syndication

Navigating Change: Engaging Business Users in Successful Change Management

9/20/24

What is Digital Asset Management?

9/11/24

How to Improve Your Data Management

9/3/24

The Future of Master Data Management: Trends in 2023-2025

9/1/24

Digital Transformation in the CPG Industry

8/30/24

5 CPG Industry Trends and Opportunities for 2024-2025

8/29/24

What is the difference between CPG and FMCG?

8/27/24

Responsible AI relies on data governance

8/27/24

6 Features of an Effective Master Data Management Solution

8/15/24

Great Data Minds: The Unsung Heros Behind Effective Data Management

8/13/24

A Data Monetization Strategy - Get More Value from Your Master Data

8/6/24

Introducing the Master Data Management Maturity Model

8/4/24

What is Augmented Data Management? (ADM)

7/31/24

Data Migration to SAP S/4HANA ERP - The Fast and Safe Approach with MDM

7/30/24

Data Governance and Data Protection: A Match Made in Heaven?

7/17/24

The Difference Between Master Data and Metadata

5/26/24

Master Data Management Roles and Responsibilities

5/20/24

8 Best Practices for Customer Master Data Management

5/16/24

What Is Master Data Governance – And Why Do You Need It?

5/12/24

Guide: Deliver flawless rich content experiences with master data governance

4/11/24

Risks of Using LLMs in Your Business – What Does OWASP Have to Say?

4/10/24

Guide: How to comply with industry standards using master data governance

4/9/24

Digital Product Passports - A Data Management Challenge

4/8/24

Guide: Get enterprise data enrichment right with master data governance

4/2/24

Guide: Getting enterprise data modelling right with master data governance

4/2/24

Guide: Improving your data quality with master data governance

4/2/24

Data Governance Trends 2024

1/30/24

NRF 2024 Recap: In the AI era, better data can make all the difference

1/19/24

Building Supply Chain Resilience: Strategies & Examples

12/19/23

How Master Data Management Can Enhance Your ERP Solution

12/14/23

Shedding Light on Climate Accountability and Traceability in Retail

11/29/23

What is Smart Manufacturing and Why Does it Matter?

10/11/23

Future Proof Your Retail Business with Composable Commerce

10/9/23

5 Common Reasons Why Manufacturers Fail at Digital Transformation

10/5/23

How to Digitally Transform a Restaurant Chain

9/29/23

Three Benefits of Moving to Headless Commerce and the Role of a Modern PIM

9/14/23

12 Steps to a Successful Omnichannel and Unified Commerce

7/6/23

CGF Global Summit 2023: Unlock Sustainable Growth With Collaboration and Innovation

7/5/23

Navigating the Current Challenges of Supply Chain Management

6/28/23

Product Data Management during Mergers and Acquisitions

4/6/23

A Complete Master Data Management Glossary

3/14/23

4 Ways to Reduce Ecommerce Returns

3/8/23

Asset Data Governance is Central for Asset Management

3/1/23

4 Common Master Data Management Implementation Styles

2/21/23

How to Leverage Internet of Things with Master Data Management

2/14/23

Manufacturing Trends and Insights in 2023-2025

2/14/23

Sustainability in Retail Needs Governed Data

2/13/23

NRF 2023: Retail Turns to AI and Automation to Increase Efficiencies

1/20/23

5 Key Manufacturing Challenges in 2023

1/16/23

What is a Golden Customer Record in Master Data Management?

1/9/23

Innovation in Retail

1/4/23

Life Cycle Assessment Scoring for Food Products

11/21/22

Retail of the Future

11/14/22

Omnichannel Strategies for Retail

11/7/22

Hyper-Personalized Customer Experiences Need Multidomain MDM

11/5/22

What is Omnichannel Retailing and What is the Role of Data Management?

10/25/22

Most Common ISO Standards in the Manufacturing Industry

10/18/22

How to Get Started with Master Data Management: 5 Steps to Consider

10/17/22

What is Supply Chain Analytics and Why It's Important

10/12/22

What is Data Quality and Why It's Important

10/12/22

An Introductory Guide: What is Data Intelligence?

10/1/22

Revolutionizing Manufacturing: 5 Must-Have SaaS Systems for Success

9/15/22

An Introductory Guide to Supplier Compliance

9/7/22

What is Application Data Management and How Does It Differ From MDM?

8/29/22

Digital Transformation in the Manufacturing Industry

8/25/22

Master Data Management Framework: Get Set for Success

8/17/22

Discover the Value of Your Data: Master Data Management KPIs & Metrics

8/15/22

Supplier Self-Service: Everything You Need to Know

6/15/22

Omnichannel vs. Multichannel: What’s the Difference?

6/14/22

Create a Culture of Data Transparency - Begin with a Solid Foundation

6/10/22

The 5 Biggest Retail Trends for 2023-2025

5/31/22

What is a Location Intelligence?

5/31/22

Omnichannel Customer Experience: The Ultimate Guide

5/30/22

Location Analytics – All You Need to Know

5/26/22

Omnichannel Commerce: Creating a Seamless Shopping Experience

5/24/22

Top 4 Data Management Trends in the Insurance Industry

5/11/22

What is Supply Chain Visibility and Why It's Important

5/1/22

The Ultimate Guide to Data Transparency

4/21/22

How Manufacturers Can Shift to Product-as-a-Service Offerings

4/20/22

How to Check Your Enterprise Data Foundation

4/16/22

An Introductory Guide to Manufacturing Compliance

4/14/22

Multidomain MDM vs. Multiple Domain MDM

3/31/22

Making Master Data Accessible: What is Data as a Service (DaaS)?

3/29/22

How to Build a Successful Data Governance Strategy

3/23/22

What is Unified Commerce? Key Advantages & Best Practices

3/22/22

How to Choose the Right Data Quality Tool?

3/22/22

What is a data domain? Meaning & examples

3/21/22

6 Best Practices for Data Governance

3/17/22

5 Advantages of a Master Data Management System

3/16/22

A Unified Customer View: What Is It and Why You Need It

3/9/22

Supply Chain Challenges in the CPG Industry

2/24/22

The Best Data Governance Tools You Need to Know About

2/17/22

Top 5 Most Common Data Quality Issues

2/14/22

What Is Synthetic Data and Why It Needs Master Data Management

2/10/22

What is Cloud Master Data Management?

2/8/22

How to Implement Data Governance

2/7/22

Build vs. Buy Master Data Management Software

1/28/22

Why is Data Governance Important?

1/27/22

Five Reasons Your Data Governance Initiative Could Fail

1/24/22

How to Turn Your Data Silos Into Zones of Insight

1/21/22

How to Improve Supplier Experience Management

1/16/22

​​How to Improve Supplier Onboarding

1/16/22

How to Enable a Single Source of Truth with Master Data Management

1/13/22

What is a Data Quality Framework?

1/11/22

How to Measure the ROI of Master Data Management

1/11/22

What is Manufacturing-as-a-Service (MaaS)?

1/7/22

The Ultimate Guide to Building a Data Governance Framework

1/4/22

Master Data Management Tools - and Why You Need Them

12/20/21

The Dynamic Duo of Data Security and Data Governance

12/20/21

How to Choose the Right Supplier Management Solution

12/20/21

How Data Transparency Enables Sustainable Retailing

12/6/21

What is Supplier Performance Management?

12/1/21

What is Party Data? All You Need to Know About Party Data Management

11/28/21

What is Data Compliance? An Introductory Guide

11/18/21

How to Create a Marketing Center of Excellence

11/14/21

The Complete Guide: How to Get a 360° Customer View

11/7/21

How Location Data Adds Value to Master Data Projects

10/29/21

How Marketers Should Prepare for the 2023 Holiday Shopping Season

10/26/21

What is Supplier Lifecycle Management?

10/19/21

What is a Data Mesh? A Simple Introduction

10/15/21

How to Build a Master Data Management Strategy

9/26/21

10 Signs You Need a Master Data Management Platform

9/2/21

What Vendor Data Is and Why It Matters to Manufacturers

8/31/21

3 Reasons High-Quality Supplier Data Can Benefit Any Organization

8/25/21

4 Trends in the Automotive Industry

8/11/21

What is Reference Data and Reference Data Management?

8/9/21

What Obstacles Are Impacting the Global Retail Recovery?

8/2/21

GDPR as a Catalyst for Effective Data Governance

7/25/21

All You Need to Know About Supplier Information Management

7/21/21

5 Tips for Driving a Centralized Data Management Strategy

7/3/21

Welcome to the Decade of Transparency

5/26/21

How to Become a Customer-Obsessed Brand

5/12/21

How to Create a Master Data Management Roadmap in Five Steps

4/27/21

What is a Data Catalog? Definition and Benefits

4/13/21

How to Improve the Retail Customer Experience with Data Management

4/8/21

How to Choose the Right Master Data Management Solution

3/29/21

Business Intelligence and Analytics: What's the Difference?

3/25/21

Spending too much on Big Data? Try Small Data and MDM

3/24/21

What is a Data Lake? Everything You Need to Know

3/21/21

How to Extract More Value from Your Data

3/17/21

Are you making decisions based on bad HCO/HCP information?

2/24/21

Why Master Data Cleansing is Important to CPG Brands

1/20/21

CRM 2.0 – It All Starts With Master Data Management

12/19/20

5 Trends in Telecom that Rely on Transparency of Master Data

12/15/20

10 Data Management Trends in Financial Services

11/19/20

Seasonal Marketing Campaigns: What Is It and Why Is It Important?

11/8/20

What Is a Data Fabric and Why Do You Need It?

10/29/20

Transparent Product Information in Pharmaceutical Manufacturing

10/14/20

How to Improve Back-End Systems Using Master Data Management

9/19/20

8 Benefits of Transparent Product Information for Medical Devices

9/1/20

How Retailers Can Increase Online Sales in 2023

8/23/20

Master Data Management (MDM) & Big Data

8/14/20

Key Benefits of Knowing Your Customers

8/9/20

Women in Master Data: Kelly Amavisca, Ferguson

8/5/20

Customer Data in Corporate Banking Reveal New Opportunities

7/21/20

How to Analyze Customer Data With Customer Master Data Management

7/21/20

How to Improve Your 2023 Black Friday Sales in 5 Steps

7/18/20

4 Ways Product Information Management (PIM) Improves the Customer Experience

7/18/20

How to Estimate the ROI of Your Customer Data

7/1/20

Women in Master Data: Rebecca Chamberlain, M&S

6/24/20

How to Personalise Insurance Solutions with MDM

6/17/20

How to Democratize Your Data

6/3/20

How to Get Buy-In for a Master Data Management Solution

5/25/20

How CPG Brands Manage the Impact of Covid-19 in a Post-Pandemic World

5/18/20

5 Steps to Improve Your Data Syndication

5/7/20

Marketing Data Quality: Why Is It Important and How to Get Started

3/26/20

Panic Buying: Navigating Long-term Implications and Uncertainty

3/24/20

Women in Master Data: Ditte Brix, IMPACT

2/20/20

Get More Value From Your CRM With Customer Master Data Management

2/17/20

Women in Master Data: Nagashree Devadas, Stibo Systems

2/4/20

How to Create Direct-to-Consumer (D2C) Success for CPG Brands

1/3/20

Women in Master Data: Anna Schéle, Ahlsell

10/25/19

Women in Master Data: Morgan Lawrence, Infoverity

9/26/19

Women in Master Data: Sara Friberg, Acando (Part of CGI)

9/13/19

Improving Product Setup Processes Enhances Superior Experiences

8/21/19

How to Improve Your Product's Time to Market With PDX Syndication

7/18/19

8 Tips For Pricing Automation In The Aftermarket

6/1/19

How to Drive Innovation With Master Data Management

3/15/19

Discover PDX Syndication to Launch New Products with Speed

2/27/19

How to Benefit from Product Data Management

2/20/19

What is a Product Backlog and How to Avoid It

2/13/19

How to Get Rid of Customer Duplicates

2/7/19

4 Types of IT Systems That Should Be Sunsetted

1/3/19

How to Use Customer Data Modeling

11/15/18

How to Reduce Time-to-Market with Master Data Management

10/28/18

How to Start Taking Advantage of Your Data

9/12/18

6 Signs You Have a Potential GDPR Problem

8/16/18

GDPR: The DOs and DON’Ts of Personal Data

6/13/18

How Master Data Management Supports Data Security

6/7/18

Frequently Asked Questions (FAQ) About the GDPR

5/30/18

Understanding the Role of a Chief Data Officer

4/26/18

3 Steps: How to Plan, Execute and Evaluate Any IoT Initiative

2/20/18

How to Benefit From Customer-Centric Data Management

9/7/17

3 Ways to Faster Innovation with Multidomain Master Data Management

6/7/17

Product Information Management Trends to Consider

5/25/17

4 Major GDPR Challenges and How to Solve Them

5/12/17

How to Prepare for GDPR in Five Steps

2/21/17

How Data Can Help Fight Counterfeit Pharmaceuticals

1/24/17

Create the Best Customer Experience with a Customer Data Platform

1/11/17