Top 5 Most Common Data Quality Issues

Master Data Management Blog by Stibo Systems logo
| 3 minute read
February 14 2022

Data is the lifeblood of businesses today. From customer data to financial data, businesses rely on data to make informed decisions and drive growth. However, data quality issues can greatly impact the accuracy and reliability of this data leading to incorrect decisions and costly mistakes.

In this blog post, we will explore some of the most common data quality issues that businesses face and provide insights into how to identify and address them to ensure your data is accurate, complete and consistent.

 

What are the most common data quality issues?

Some of the most common data quality issues include incomplete or missing data, inconsistent data formats, inaccurate data, duplicate data and outdated data. These issues can lead to inaccurate reporting, ineffective decision making and increased costs for businesses.

  1. Incomplete or missing data: Incomplete or missing data refers to situations where required data fields are left blank or not provided. This can result in inaccurate analysis and reporting, and may lead to incorrect business decisions.

  2. Inconsistent data formats: Inconsistent data formats refer to situations where the same data is represented in different ways across multiple systems or sources. This can result in difficulty when trying to integrate data from different sources and can lead to errors in analysis and reporting.

  3. Inaccurate data: Inaccurate data refers to data that is incorrect, either due to data entry errors or due to outdated information. This can lead to incorrect reporting, ineffective decision-making and increased costs for businesses.

  4. Duplicate data: Duplicate data refers to multiple instances of the same data existing in different systems or sources. This can result in data inconsistencies and can lead to errors in analysis and reporting.

  5. Outdated data: Outdated data refers to data that is no longer relevant or current. This can lead to incorrect analysis and reporting and can lead to incorrect business decisions.

It is important for businesses to address these data quality issues through data profiling, data validation and regular data maintenance to ensure that the data they rely on is accurate, complete and up-to-date.

 

How do you fix data quality issues?

Fixing data quality issues involves several steps, including:

  1. Identify the data quality issues: Begin by identifying the data quality issues that exist within your data. This can be done through data profiling, which involves analyzing data to identify inconsistencies, inaccuracies and other issues.

  2. Determine the root cause: Once the data quality issues are identified, determine the root cause of the issue. This may involve analyzing data sources, data entry processes and data storage procedures.

  3. Develop a plan of action: Based on the root cause of the data quality issue, develop a plan of action to address the issue. This may involve implementing data validation rules, improving data entry processes or updating data storage procedures.

  4. Execute the plan: Implement the plan of action to fix the data quality issue. This may involve cleaning up existing data, updating data sources or improving data entry processes.

  5. Monitor and maintain data quality: Once the data quality issues have been addressed, continue to monitor and maintain data quality on an ongoing basis to ensure that data is accurate, complete and up-to-date.

It is important to have a systematic approach to addressing data quality issues as well as implementing best practices such as data governance, data profiling and regular data maintenance to ensure that data quality is consistently high.

 

 

What are data quality checks?

Data quality checks are a set of procedures and techniques that are used to assess the accuracy, completeness, consistency and overall quality of data. Data quality checks are typically automated processes that can be run on a regular basis to ensure that data quality issues are identified and addressed in a timely manner.

Some common examples of data quality checks include:

  • Completeness checks: These checks ensure that all required data fields are present and accounted for.

  • Consistency checks: These checks ensure that the same data is represented in the same way across multiple systems or sources.

  • Accuracy checks: These checks ensure that data is accurate and reflects the true value or status of the underlying data.

  • Validity checks: These checks ensure that data conforms to predefined business rules or constraints.

  • Integrity checks: These checks ensure that data relationships and dependencies are valid and consistent.

By implementing data quality checks, businesses can ensure that their data is accurate, complete and consistent, which can help improve decision-making, reduce costs and improve overall operational efficiency.

 

Data quality best practices

Here are some data quality best practices that businesses can follow to ensure their data is accurate, complete and consistent:

  1. Establish data governance: Create a framework for managing and ensuring the quality of data across the organization.

  2. Define data quality requirements: Clearly define the quality requirements for each type of data, including accuracy, completeness, consistency and timeliness.

  3. Implement data profiling: Analyze data to identify inconsistencies, inaccuracies and other data quality issues.

  4. Ensure data validation: Implement validation rules and processes to ensure data is accurate and consistent.

  5. Address data quality issues: Develop a plan of action to address data quality issues as they are identified.

  6. Regularly maintain data: Regularly clean and maintain data to ensure it remains accurate and up-to-date.

  7. Invest in data quality tools: Leverage data quality tools and technologies to automate data quality checks and improve data accuracy and completeness.

  8. Foster a culture of data quality: Create a culture of data quality across the organization with all stakeholders taking responsibility for data accuracy and completeness.

By implementing these best practices, businesses can ensure that their data is of high quality, which can improve decision-making, reduce costs and improve overall operational efficiency.

 

Related blog posts:



Topics: 
Master Data Management Blog by Stibo Systems logo

Driving growth for customers with trusted, rich, complete, curated data, Matt has over 20 years of experience in enterprise software with the world’s leading data management companies and is a qualified marketer within pragmatic product marketing. He is a highly experienced professional in customer information management, enterprise data quality, multidomain master data management and data governance & compliance.

Discover Blogs by Topic

  • MDM strategy
  • Data governance
  • Customer and party data
  • See more
  • Retail and distribution
  • Manufacturing
  • Data quality
  • Supplier data
  • Product data and PIM
  • AI and machine learning
  • CPG
  • Financial services
  • GDPR
  • Sustainability
  • Location data
  • PDX Syndication

What is Digital Asset Management?

9/11/24

How to Improve Your Data Management

9/3/24

The Future of Master Data Management: Trends in 2023-2025

9/1/24

Digital Transformation in the CPG Industry

8/30/24

5 CPG Industry Trends and Opportunities for 2024-2025

8/29/24

What is the difference between CPG and FMCG?

8/27/24

Responsible AI relies on data governance

8/27/24

6 Features of an Effective Master Data Management Solution

8/15/24

Great Data Minds: The Unsung Heros Behind Effective Data Management

8/13/24

A Data Monetization Strategy - Get More Value from Your Master Data

8/6/24

Introducing the Master Data Management Maturity Model

8/4/24

What is Augmented Data Management? (ADM)

7/31/24

Data Migration to SAP S/4HANA ERP - The Fast and Safe Approach with MDM

7/30/24

Data Governance and Data Protection: A Match Made in Heaven?

7/17/24

The Difference Between Master Data and Metadata

5/26/24

Master Data Management Roles and Responsibilities

5/20/24

8 Best Practices for Customer Master Data Management

5/16/24

What Is Master Data Governance – And Why Do You Need It?

5/12/24

Guide: Deliver flawless rich content experiences with master data governance

4/11/24

Risks of Using LLMs in Your Business – What Does OWASP Have to Say?

4/10/24

Guide: How to comply with industry standards using master data governance

4/9/24

Digital Product Passports - A Data Management Challenge

4/8/24

Guide: Get enterprise data enrichment right with master data governance

4/2/24

Guide: Getting enterprise data modelling right with master data governance

4/2/24

Guide: Improving your data quality with master data governance

4/2/24

Data Governance Trends 2024

1/30/24

NRF 2024 Recap: In the AI era, better data can make all the difference

1/19/24

Building Supply Chain Resilience: Strategies & Examples

12/19/23

How Master Data Management Can Enhance Your ERP Solution

12/14/23

Shedding Light on Climate Accountability and Traceability in Retail

11/29/23

What is Smart Manufacturing and Why Does it Matter?

10/11/23

Future Proof Your Retail Business with Composable Commerce

10/9/23

5 Common Reasons Why Manufacturers Fail at Digital Transformation

10/5/23

How to Digitally Transform a Restaurant Chain

9/29/23

Three Benefits of Moving to Headless Commerce and the Role of a Modern PIM

9/14/23

12 Steps to a Successful Omnichannel and Unified Commerce

7/6/23

CGF Global Summit 2023: Unlock Sustainable Growth With Collaboration and Innovation

7/5/23

Navigating the Current Challenges of Supply Chain Management

6/28/23

Product Data Management during Mergers and Acquisitions

4/6/23

A Complete Master Data Management Glossary

3/14/23

4 Ways to Reduce Ecommerce Returns

3/8/23

Asset Data Governance is Central for Asset Management

3/1/23

4 Common Master Data Management Implementation Styles

2/21/23

How to Leverage Internet of Things with Master Data Management

2/14/23

Manufacturing Trends and Insights in 2023-2025

2/14/23

Sustainability in Retail Needs Governed Data

2/13/23

NRF 2023: Retail Turns to AI and Automation to Increase Efficiencies

1/20/23

5 Key Manufacturing Challenges in 2023

1/16/23

What is a Golden Customer Record in Master Data Management?

1/9/23

Innovation in Retail

1/4/23

Life Cycle Assessment Scoring for Food Products

11/21/22

Retail of the Future

11/14/22

Omnichannel Strategies for Retail

11/7/22

Hyper-Personalized Customer Experiences Need Multidomain MDM

11/5/22

What is Omnichannel Retailing and What is the Role of Data Management?

10/25/22

Most Common ISO Standards in the Manufacturing Industry

10/18/22

How to Get Started with Master Data Management: 5 Steps to Consider

10/17/22

What is Supply Chain Analytics and Why It's Important

10/12/22

What is Data Quality and Why It's Important

10/12/22

An Introductory Guide: What is Data Intelligence?

10/1/22

Revolutionizing Manufacturing: 5 Must-Have SaaS Systems for Success

9/15/22

An Introductory Guide to Supplier Compliance

9/7/22

What is Application Data Management and How Does It Differ From MDM?

8/29/22

Digital Transformation in the Manufacturing Industry

8/25/22

Master Data Management Framework: Get Set for Success

8/17/22

Discover the Value of Your Data: Master Data Management KPIs & Metrics

8/15/22

Supplier Self-Service: Everything You Need to Know

6/15/22

Omnichannel vs. Multichannel: What’s the Difference?

6/14/22

Create a Culture of Data Transparency - Begin with a Solid Foundation

6/10/22

The 5 Biggest Retail Trends for 2023-2025

5/31/22

What is a Location Intelligence?

5/31/22

Omnichannel Customer Experience: The Ultimate Guide

5/30/22

Location Analytics – All You Need to Know

5/26/22

Omnichannel Commerce: Creating a Seamless Shopping Experience

5/24/22

Top 4 Data Management Trends in the Insurance Industry

5/11/22

What is Supply Chain Visibility and Why It's Important

5/1/22

The Ultimate Guide to Data Transparency

4/21/22

How Manufacturers Can Shift to Product-as-a-Service Offerings

4/20/22

How to Check Your Enterprise Data Foundation

4/16/22

An Introductory Guide to Manufacturing Compliance

4/14/22

Multidomain MDM vs. Multiple Domain MDM

3/31/22

Making Master Data Accessible: What is Data as a Service (DaaS)?

3/29/22

How to Build a Successful Data Governance Strategy

3/23/22

What is Unified Commerce? Key Advantages & Best Practices

3/22/22

How to Choose the Right Data Quality Tool?

3/22/22

What is a data domain? Meaning & examples

3/21/22

6 Best Practices for Data Governance

3/17/22

5 Advantages of a Master Data Management System

3/16/22

A Unified Customer View: What Is It and Why You Need It

3/9/22

Supply Chain Challenges in the CPG Industry

2/24/22

The Best Data Governance Tools You Need to Know About

2/17/22

Top 5 Most Common Data Quality Issues

2/14/22

What Is Synthetic Data and Why It Needs Master Data Management

2/10/22

What is Cloud Master Data Management?

2/8/22

How to Implement Data Governance

2/7/22

Build vs. Buy Master Data Management Software

1/28/22

Why is Data Governance Important?

1/27/22

Five Reasons Your Data Governance Initiative Could Fail

1/24/22

How to Turn Your Data Silos Into Zones of Insight

1/21/22

How to Improve Supplier Experience Management

1/16/22

​​How to Improve Supplier Onboarding

1/16/22

How to Enable a Single Source of Truth with Master Data Management

1/13/22

What is a Data Quality Framework?

1/11/22

How to Measure the ROI of Master Data Management

1/11/22

What is Manufacturing-as-a-Service (MaaS)?

1/7/22

The Ultimate Guide to Building a Data Governance Framework

1/4/22

Master Data Management Tools - and Why You Need Them

12/20/21

The Dynamic Duo of Data Security and Data Governance

12/20/21

How to Choose the Right Supplier Management Solution

12/20/21

How Data Transparency Enables Sustainable Retailing

12/6/21

What is Supplier Performance Management?

12/1/21

What is Party Data? All You Need to Know About Party Data Management

11/28/21

What is Data Compliance? An Introductory Guide

11/18/21

How to Create a Marketing Center of Excellence

11/14/21

The Complete Guide: How to Get a 360° Customer View

11/7/21

How Location Data Adds Value to Master Data Projects

10/29/21

How Marketers Should Prepare for the 2023 Holiday Shopping Season

10/26/21

What is Supplier Lifecycle Management?

10/19/21

What is a Data Mesh? A Simple Introduction

10/15/21

How to Build a Master Data Management Strategy

9/26/21

10 Signs You Need a Master Data Management Platform

9/2/21

What Vendor Data Is and Why It Matters to Manufacturers

8/31/21

3 Reasons High-Quality Supplier Data Can Benefit Any Organization

8/25/21

4 Trends in the Automotive Industry

8/11/21

What is Reference Data and Reference Data Management?

8/9/21

What Obstacles Are Impacting the Global Retail Recovery?

8/2/21

GDPR as a Catalyst for Effective Data Governance

7/25/21

All You Need to Know About Supplier Information Management

7/21/21

5 Tips for Driving a Centralized Data Management Strategy

7/3/21

Welcome to the Decade of Transparency

5/26/21

How to Become a Customer-Obsessed Brand

5/12/21

How to Create a Master Data Management Roadmap in Five Steps

4/27/21

What is a Data Catalog? Definition and Benefits

4/13/21

How to Improve the Retail Customer Experience with Data Management

4/8/21

How to Choose the Right Master Data Management Solution

3/29/21

Business Intelligence and Analytics: What's the Difference?

3/25/21

Spending too much on Big Data? Try Small Data and MDM

3/24/21

What is a Data Lake? Everything You Need to Know

3/21/21

How to Extract More Value from Your Data

3/17/21

Are you making decisions based on bad HCO/HCP information?

2/24/21

Why Master Data Cleansing is Important to CPG Brands

1/20/21

CRM 2.0 – It All Starts With Master Data Management

12/19/20

5 Trends in Telecom that Rely on Transparency of Master Data

12/15/20

10 Data Management Trends in Financial Services

11/19/20

Seasonal Marketing Campaigns: What Is It and Why Is It Important?

11/8/20

What Is a Data Fabric and Why Do You Need It?

10/29/20

Transparent Product Information in Pharmaceutical Manufacturing

10/14/20

How to Improve Back-End Systems Using Master Data Management

9/19/20

8 Benefits of Transparent Product Information for Medical Devices

9/1/20

How Retailers Can Increase Online Sales in 2023

8/23/20

Master Data Management (MDM) & Big Data

8/14/20

Key Benefits of Knowing Your Customers

8/9/20

Women in Master Data: Kelly Amavisca, Ferguson

8/5/20

Customer Data in Corporate Banking Reveal New Opportunities

7/21/20

How to Analyze Customer Data With Customer Master Data Management

7/21/20

How to Improve Your 2023 Black Friday Sales in 5 Steps

7/18/20

4 Ways Product Information Management (PIM) Improves the Customer Experience

7/18/20

How to Estimate the ROI of Your Customer Data

7/1/20

Women in Master Data: Rebecca Chamberlain, M&S

6/24/20

How to Personalise Insurance Solutions with MDM

6/17/20

How to Democratize Your Data

6/3/20

How to Get Buy-In for a Master Data Management Solution

5/25/20

How CPG Brands Manage the Impact of Covid-19 in a Post-Pandemic World

5/18/20

5 Steps to Improve Your Data Syndication

5/7/20

Marketing Data Quality: Why Is It Important and How to Get Started

3/26/20

Panic Buying: Navigating Long-term Implications and Uncertainty

3/24/20

Women in Master Data: Ditte Brix, IMPACT

2/20/20

Get More Value From Your CRM With Customer Master Data Management

2/17/20

Women in Master Data: Nagashree Devadas, Stibo Systems

2/4/20

How to Create Direct-to-Consumer (D2C) Success for CPG Brands

1/3/20

Women in Master Data: Anna Schéle, Ahlsell

10/25/19

Women in Master Data: Morgan Lawrence, Infoverity

9/26/19

Women in Master Data: Sara Friberg, Acando (Part of CGI)

9/13/19

Improving Product Setup Processes Enhances Superior Experiences

8/21/19

How to Improve Your Product's Time to Market With PDX Syndication

7/18/19

8 Tips For Pricing Automation In The Aftermarket

6/1/19

How to Drive Innovation With Master Data Management

3/15/19

Discover PDX Syndication to Launch New Products with Speed

2/27/19

How to Benefit from Product Data Management

2/20/19

What is a Product Backlog and How to Avoid It

2/13/19

How to Get Rid of Customer Duplicates

2/7/19

4 Types of IT Systems That Should Be Sunsetted

1/3/19

How to Use Customer Data Modeling

11/15/18

How to Reduce Time-to-Market with Master Data Management

10/28/18

How to Start Taking Advantage of Your Data

9/12/18

6 Signs You Have a Potential GDPR Problem

8/16/18

GDPR: The DOs and DON’Ts of Personal Data

6/13/18

How Master Data Management Supports Data Security

6/7/18

Frequently Asked Questions (FAQ) About the GDPR

5/30/18

Understanding the Role of a Chief Data Officer

4/26/18

3 Steps: How to Plan, Execute and Evaluate Any IoT Initiative

2/20/18

How to Benefit From Customer-Centric Data Management

9/7/17

3 Ways to Faster Innovation with Multidomain Master Data Management

6/7/17

Product Information Management Trends to Consider

5/25/17

4 Major GDPR Challenges and How to Solve Them

5/12/17

How to Prepare for GDPR in Five Steps

2/21/17

How Data Can Help Fight Counterfeit Pharmaceuticals

1/24/17

Create the Best Customer Experience with a Customer Data Platform

1/11/17